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Rotating machinery in industry is usually placed on foundation structures that are
#exible over the operational speed range and thus in#uence the dynamics of the coupled
system. The mechanical impedance method o!ers a computationally e$cient means of
developing simple, but su$ciently accurate analytical linear models of such systems, for
most practical purposes. The technique facilitates a modelling approach where a mixture
of theoretical and experimental models can be incorporated into a model of the complete
system. This is particularly useful when modifying existing machinery, where, for example,
it may be easier and cheaper to measure the dynamics of a foundation rather than
model it. In this paper a composite linear model of a super-critical rotor supported
on a foundation through ball-bearings is developed using the mechanical impedance
technique. Experimental results are presented to validate the model. Gyroscopic
e!ects, although included in the model, were not investigated due to the limitations of the
test rig.
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1. INTRODUCTION

Rotating machinery in power plants and industry is generally supported on foundation
structures that are #exible over the operational speed range and thus contribute
to the dynamics of the coupled system. A review of the modelling procedures used for
such systems [1] shows that the two major methods employed are the transfer matrix
(TM) method and the "nite element (FE) method. While the TM method is computationally
more e$cient than the FE method, its restriction to chain-like structures necessitated
the development of the enhanced TM methods [2] and combined FE/TM methods [3]
to include the coupled foundation structure. Like the TM method, the mechanical
impedance method deals with steady state frequency response descriptions for
linear mechanical components. The component is described by a single matrix
that incorporates mass, sti!ness, damping and gyroscopic terms, relating the forces at
the input terminals to the resulting velocities at the output terminals [4]. Similar
matrix assembly techniques to those used in FE can be used in the mechanical impedance
method. However, in deriving the mechanical impedance matrix of an element analytically
using the wave approach, the exact dynamic shape of the element is used [5] rather than
the quasi-static approximation used in FE. Hence, provided the element is uniform,
its size is unrestricted, with no e!ect on accuracy. This leads to a much smaller
0022-460X/01/030445#22 $35.00/0 ( 2001 Academic Press



446 P. BONELLO AND M. J. BRENNAN
number of degrees of freedom compared to the FE method. Consequently, the
mechanical impedance technique o!ers the suitability of FE methods to model coupled
rotor-bearing-foundation systems with the advantages of computational e$ciency.
However, its main advantage relative to the transfer matrix approach is that, unlike the TM
method the matrices are formulated directly in terms of frequency-response functions,
which can be determined from measurement with very little manipulation. This facilitates
a #exible modelling approach. For example, some parts of the rotor dynamic system can be
modelled using FE techniques, or the wave approach as discussed in this paper, and some
parts of the system could be characterized by measurement. A methodology such as this
could be particularly useful when trying to modify a system that has already been built,
where it would be much quicker and easier to measure the dynamic behaviour of the
foundation rather than to model it. Although there is PC-based proprietary software that
will handle complex rotor systems, for example reference [6], it is believed that the system
proposed in this paper has some advantages in that it can be easily implemented on
standard software, including spreadsheets, with considerable cost saving.

The mechanical impedance method is generally well documented [4, 5], but its
application to rotor dynamics problems is relatively unexplored. Reiger et al. [7]
applied the analogous dynamic sti!ness technique to a general rotor-bearing system in
order to "nd its unbalance response, critical speeds and instability threshold speeds.
Similar work was done more recently by Ra!a et al. [8] with respect to unbalance response.
However, in both these works foundation #exibility was not included. In the present work,
the mechanical impedance formulation was used instead of the dynamic sti!ness
formulation. However, such a choice is not important since the two formulations merely
di!er by a factor of ju.

In this paper the rotor system is split into two, the rotor-bearing subsystem and
the foundation subsystem. The rotor-bearing subsystem is modelled as beams, discs
and linear springs, and the foundation subsystem, which consists of bearing housings
(pedestals), foundation structure and isolation system. Thus, the bearing pedestals
are considered to be integral with the foundation, which follows the approach taken
by Kramer [9], but is in contrast to the approach taken by Reiger and Zhou [10],
where the bearing pedestals are modelled as a separate subsystem. The features of the
model described in this paper that set it apart from the models discussed in references
[9, 10] are that a hybrid (part analytical model, part experimental model) approach
can be used. To illustrate this, two alternative approaches are taken to include
foundation #exibility e!ects in the model. In the "rst approach, called the theoretical
model, the foundation subsystem is modelled as a Timoshenko beam, with attached
rigid bodies for bearing pedestals and other attachments. Alternatively, it could be
modelled by using FE techniques such as in reference [3], and the impedance of the
foundation subsystem exported from the FE software into the coupled system model.
In the second approach, called the hybrid model, the foundation impedance matrix
can be determined by measurement. With both approaches the impedance matrix
of the foundation subsystem is determined independently from the rotor-bearing sub-
system and subsequently integrated into the impedance matrix of the complete
rotor-bearing- foundation assembly.

The aim of this paper is to develop an analytical model based on the mechanical
impedance technique to predict the unbalance response of a general multi-span coupled
rotor-bearing-foundation system and validate it on small-scale test rig. The paper is
organised as follows. Following this introduction, the derivation of the model is presented
in section 2. The experimental work is described in section 3, the results discussed in section
4 and some conclusions given in section 5.



2. MODEL DEVELOPMENT
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2.1. GENERAL DESCRIPTION

The simpli"ed general model used in this paper is shown in Figure 1 where the z-axis is
along the shaft, the xz plane is horizontal and the yz plane is vertical. A list of notation is
given in Appendix A. This system can be conveniently divided into the rotor-bearing
subsystem and the foundation subsystem. The rotor-bearing subsystem has M stations
(i"12M) that are joined by shaft elements which are modelled as beam segments which
can rotate about their longitudinal axis and bend in both xz and yz planes. A rotor station i
Figure 1. Model adopted for a multi-span coupled rotor-bearing-foundation system. (a) projection on yz plane,
(b) general projection on xy plane.



448 P. BONELLO AND M. J. BRENNAN
is de"ned as a location along the rotor where there is either a bearing, a disc, or a change in
cross-section. Any out-of-balance is assumed to be concentrated at the discs and internal
damping in the shaft is neglected. The shaft segments can be modelled either as rotating
Euler}Bernoulli or Timoshenko beams bending in two planes depending on the speed of
interest and the size of the shaft. Each bearing (excluding the housing) is modelled as a pair
of uncoupled complex (damped) springs in the x and y directions. Such a model is
admissible for rolling element bearings but not for journal bearings where strong cross-
coupling between the two orthogonal directions exists [11].

2.2. ROTOR-BEARING SUBSYSTEM MODEL

2.2.1. Impedance matrix of a shaft element

The shaft element is shown in Figure 2. There is a choice of two shaft elements depending
upon the operational speed and type of system to be modelled. An Euler}Bernoulli beam
model is appropriate for low-speed #exible shafts and a Timoshenko beam model is
appropriate for high-speed, larger diameter shafts. Because the polar moment of inertia is
neglected in the Euler}Bernoulli shaft element, the vibrations in the two planes of bending
are uncoupled. In this case, the impedance matrix of the shaft element can be determined by
simply expanding the impedance matrix of an Euler}Bernoulli beam bending in one plane to
include both planes of bending. The relationship between the force and velocity vectors and
the impedance matrix of the nth shaft element is given by (a list of notation is given in
Appendix A)
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and Z
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is the 8]8 expanded form of the 4]4 impedance matrix described by Lyon [12]

and is given by
Figure 2. Projection of shaft segment n in yz plane.
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where a, b, c, d, e and f for a shaft of length ¸ and cross-sectional area A are given by

a"
!jJk (sin k¸ cosh k¸#cos k¸ sinh k¸)

D
, b"

!jJ sin k¸ sinh k¸

D
,

c"
jJk(sinh k¸#sin k¸)

D
, d"

jJ (cos k¸!cosh k¸)

D

e"
jJ(cos k¸ sinh k¸!sin k¸ cosh k¸)

kD
, f"

jJ(sin k¸!sinh k¸)

kD
,

where D"1!cosh k¸ cos k¸, J"oAc
l
K, c

l
"JE/o , K"JI/A , k"u1@2 (oA/EI)1@4.

With a Timoshenko shaft element the inclusion of the polar moment of inertia results in
the coupling of the two planes of bending due to the gyroscopic terms. The impedance
matrix is thus more complicated and is obtained by solving a pair of equations relating to
vibration in the xz and yz planes. The manipulation follows Dimentberg's analysis of
a #exible shaft with closely spaced discs attached [13] and di!ers considerably from the
manipulation done by Ra!a et al. [8]. The equations of motion of the shaft are
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(2b)

where I
p
"2I

t
. From equations (2a,b) it can be seen that the two planes of bending are

coupled by the last two terms on the left-hand sides of equations (2), which are the
gyroscopic terms. For harmonic motion at frequency u,

x (z, t)"ReMX (z)e+utN, y(z,t)"ReM> (z)e+utN, (3a,b)

where ReM N denotes the real part of M N and X (z) and >(z) are assumed to have the form

X (z)"C
1
e(g@L)z , > (z )"C

2
e(g@L )z , (4a,b)

in which C
1
and C

2
are constants. Combining equations (2}4) results in the matrix equation
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where k"u/X, s2"EI/(aAG¸2) is the shear #exibility parameter, j"k¸ is the non-
dimensional Euler}Bernoulli wavenumber and r2"r2

0
/¸2 is the rotary inertia parameter

[5]. To determine the characteristic equation of equation (5), the determinant of the 2]2
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matrix is set to zero, which results in the eighth order equation
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A general solution for X(z) and >(z) is of the form
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and hence the impedance matrix Z
n

of the rotating Timoshenko shaft element is
given by

Z
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2.2.2. Assembly of rotor-bearing subsystem impedance matrix

The impedance matrices of consecutive shaft elements are assembled in a manner similar
to that of FE [11], by using continuity of linear and angular velocities at each shaft station.
An example of the assembly of two consecutive shaft elements is shown in Figure 3. For
a total of M rotor stations, the assembled rotor-bearing subsystem matrix, Z
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, is of order
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movement. Additional matrices are added at the appropriate locations to allow for the
presence of discs or bearings at the rotor stations. At a disc station the forces and moments
are summed in the xz plane, respectively,
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. From equations (12b) and (13b) it is again seen that the two planes
Figure 3. Assembly of impedance matrices of two consecutive shaft segments n, n#1.
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of bending are coupled by the gyroscopic terms. If at the ith rotor station there is then
a disc:
(a) the matrix
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columns of the assembled impedance matrix of the rotor; (b) the terms ;
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2.3. FOUNDATION SUBSYSTEM

Since the force inputs from the rotor-bearing subsystem to the foundation assembly are
located at the bearings, which are assumed to exert no restraining moment, the foundation
impedance matrix can be expressed as a 2N]2N matrix Z
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where
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external moments and angular velocities are included in the above formulation since the
former are assumed to be zero and the later are not required. In the hybrid model approach
Z

f
is determined empirically or by means other than the mechanical impedance technique.

To obtain the matrix Z
f
by using the theoretical model, the foundation impedance matrix

is "rst assembled in a manner similar to that of the rotor-bearing system. However, the two
planes of bending are uncoupled and the impedance matrices of the foundation in the xz
and yz planes can be determined separately, resulting in lower order matrices. The
impedance matrix for a Timoshenko beam bending in one plane is derived by setting X"0
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in equations (2a,b), but with taking note of the di!erent second moments of areas in the two
planes of bending. Thus, equation (5) degenerates to,
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Applying the displacement and force/moment boundary conditions at the nodes in a similar
way to that described in section 2.2, gives the impedance matrix for the xz plane

Z"P
2
P~1
1

/(ju), (18)

where
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0 H
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0 H
b
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a
¸ H

a
cosh c

a
¸ !H

b
sin c

b
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b
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b
¸
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a
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a
¸ J

a
sinh c

a
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b
cos c

b
¸ J

b
sin c

b
¸
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P
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"

1 0 1 0
0 !EI
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a
J
a

0 !EI
y
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b
J
b
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a
¸ !sinh c
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b
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¸
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a
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a
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b
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b
J
b
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b
¸
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By following the procedure given in section 2.2 the foundation impedance matrix in one
plane is assembled using the continuity of linear and angular velocity at a common station
and the insertion of the impedance matrices of the attached masses and isolators at the
appropriate location. The resulting assembled foundation impedance matrix Z

Fx
in one

plane (e.g., the xz plane) is of the form

f
x
"Z

Fx
v
x
, (19)

where f
x
"[F

f1
M

f1
F
f2

M
f2
2F

fR
M

fR
]T is the column vector of external forces and

moments on the foundation in the xz plane, and v
x
"[<

f1
X

f1
<
f2

X
f2
2<

fR
X

fR
]T is the

column vector of linear and angular velocities in the xz plane at the foundation stations. R is
the total number of foundation stations (N(R, where N is the number of bearing
pedestals). Since external forces on the foundation assembly are only applied at the bearing
pedestals, and the angular velocities at the foundation stations are not required, matrix
Z

Fx
may be reduced to an N]N matrix, Z

fx
. This is achieved "rst by applying the exact

static reduction technique that is used in "nite element statics to remove all the rotational
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co-ordinates from the static sti!ness matrix [11]. The resulting matrix is then inverted and
the qth row and qth column are deleted, where q is the number of a foundation station at
which there is no bearing pedestal attached (and hence no external applied force). The
resulting matrix is then re-inverted back to yield Z

fx
. A similar process is applied to the

foundation movement in the yz plane to give Z
fy

. The two matrices Z
fx

and Z
fy

are then
combined to give the matrix Z

f
as in equation (16).

2.4. THE COUPLED SYSTEM

The 2N]1 foundation forcing vector f
f

in equation (16) contains the forces exerted by
the bearings on the foundation: i.e.,

f
f
"[z

bxx1
(<

f1
!<

1
) z

byy1
(<@

f1
!<@

1
)2z

bxxN
(<

fN
!<

N
) z

byyN
(<@

fN
!<@

N
)]T. (20)

Hence equation (16) can be written as

f
f
"Z@

f
v
f
, (21)

where f
f
"[z

bxx1
<
1

z
byy1
<@

1
2z

bxxN
<
N

z
byyN
<@

N
]T and Z@

f
"Z

f
#K

f
where K

f
is a 2N]2N

diagonal matrix of bearing impedances given by

K
f
"

z
bxx1

z
byy1

}
z
bxxN

z
byyN

. (22)

The "nal step in assembling the overall impedance matrix Z of the coupled
rotor-bearing-foundation assembly is the integration of the system of equations given by
equation (11) for the rotor-bearing subsystem and equation (21) for the bearing-foundation
subsystem. The "nal result is found to be

f"Zv, (23)

where v"[<
1
<@

1
X

1
X@

1
2<

M
<@

M
X

M
X@

M
<
f1
<@

f1
2<

fN
<@

fN
]T and

Z"C
Z

r
ZTg

Zg

Z@
f
D ,

Z is of the order (4M#2N)](4M#2N) and Z
r
and Z@

f
are the assembled rotor-bearing

and bearing-foundation matrices given in equations (11) and (21) respectively. Zg is
a 4M]2N matrix which contains zeros everywhere except at entries which are "lled in
according to the following algorithm.

If the pth bearing (p"1,2, N) is at the ith rotor station then insert the matrix !Z
B

at
the M1#4(i!1)N2M2#4(i!1)Nth rows, M4M#1#2(p!1)N2M4M#2#2(p!1)th
columns of Z.

f is a column vector of forces external to the rotor-bearing-foundation system of length
(4M#2N) which is constructed according to the following algorithm: (a) form a column
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vector of zeros of length (4M#2N); (b) if, at the ith rotor station there is a disc add

(i) ;
i
X2e+(i to the M1#4(i!1)Nth row, (ii) ;

i
X2e+((i~

n
2) to the M2#4(i!1)Nth row.

Apart from the assumption that there are no restraining moments at the bearings, the
above algorithm for f is valid if there are are no shear force and bending moments in the two
planes of bending at the ends of the rotor.

2.5. EXTENSION TO FLUID FILM JOURNAL BEARINGS

The model described above can be extended to linearized #uid "lm journal bearings by
generalizing the matrices ZB and K

f
in equations (15) and (22) to include the cross-coupled

bearing impedance terms z
bxyi

, z
byxi

, as follows:

ZB"C
z
bxxi

z
byxi

z
bxyi

z
byyi
D , (15a)

K
f
"

z
bxx1

z
bxy1

z
byx1

z
byy1

}
} } }

} z
bxxN

z
bxyN

z
byxN

z
byyN

. (22a)

2.6. UNBALANCE RESPONSE, NATURAL FREQUENCIES, INSTABILITY ANALYSIS

For the unbalance response, synchronous vibration applies, i.e., u"X. Z and f in equation
(23) are determined for each speed and Z inverted to give v and hence the de#ection vector
u"v/(ju). Thus the unbalance response at each rotor station and bearing pedestal can be
obtained. Moreover, for any speed, once u has been determined, the complex amplitudes X,
> of the de#ections at any arbitrary location P along the rotor can be determined exactly
[14]. The shaft orbit at P can be obtained for any speed by forming the complex number
w(t)"x(t)#jy(t), where x(t)"ReMXe+utN, y(t)"ReM>e+utN and plotting w(t) on an Argand
diagram from t"0 to 2n/u. From the sense of rotation of this plot about the origin it can
established whether the whirl is of the forward or reverse type at that speed. The critical
speeds are obtained directly from the maxima of the unbalance response.

The rotor and bearing pedestal velocities given by equation (23) are absolute values,
measured with respect to an inertial frame of reference. In practice, absolute accelerations of
bearing pedestal vibrations are generally measured. However, for rotor de#ections,
proximity probes are more frequently used, which give the de#ections of the shaft relative to
the foundation. For positions P on the rotor and Q on the foundation the relative
displacements are given by

X
r
"X

P
!X

Q
, >

r
">

P
!>

Q
, (24a,b)

where X
P
, >

P
, X

Q
, >

Q
are absolute values. Equations (24a,b) essentially neglect any

&&wobbling'' of the foundation about the z-axis. If P and Q are not located at a bearing
pedestal a &&dummy'' bearing pedestal of zero bearing sti!ness and damping and zero
pedestal mass can be inserted between P and Q as shown in Figure 4. X

P
, >

P
, X

Q
, >

Q
will

then be obtained directly from equation (23).



Figure 4. Insertion of dummy bearing and pedestal for the determination of relative motion.
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For the determination of the natural frequencies and instability threshold speeds, general
(non-synchronous) vibration conditions are considered. The natural frequencies u

n
at

each speed X are found by locating the zeros of the determinant of the impedance
matrix Z of the system and taking their real part. The instability threshold speeds could
also be found by observing the speeds where the imaginary part of these zeros changes
sign. The zeros of the determinant of Z are located by using Muller's Algorithm
as in reference [7]. The critical speeds can also be obtained by "nding where the speed X
is equal to a natural frequency. Since the aim of the paper was to present and validate
a simple method of linking the foundation subsystem with the rotor-bearing subsystem,
the prediction of natural frequencies and instability threshold speeds was considered
outside the scope of this research, which was restricted to the determination of the
unbalance response and critical speeds from the maxima. Moreover, instability problems
arise due to the cross-coupled bearing impedance terms z

bxyi
, z

byxi
[11] which are signi"cant

in #uid "lm journal bearings but negligible in rolling element bearings, as previously
mentioned.

3. MODEL VALIDATION

3.1. DESCRIPTION OF TEST RIG

The test rig used for the experimental veri"cation of the coupled rotor-bearing-foundation
system model is shown in Figure 5. It was a modi"cation of a Bentley Nevada Rotor Kit
RK4 and consisted of a mild steel 10 mm diameter shaft mounted on three nominally
identical double-row self-aligning ball bearings housed in three mild steel-bearing pedestals
BP1, BP2 and BP3. The shaft carried a 30 mm diameter steel disc termed the rotor mass
wheel=, into which known unbalance masses could be screwed. The shaft was connected to
the motor M via a #exible coupling. The foundation, which was entirely made of an
aluminium alloy consisted of a right-angled &&V'' section beam with three feet F1, F2, F3
attached. The whole assembly was supported by a thick layer of foam to provide suitable
isolation.

With reference to Figure 6 the model developed in the previous section was used to solve
two model problems, over a rotational speed range of 1500}12 000 rpm with a resolution of
30 rpm. The "rst problem (Problem I) was to "nd the absolute unbalance response at the
bearing pedestals BP1, BP2, BP3 and at positions P

1
}P

6
along the rotor by both the



Figure 5. Coupled rotor-bearing-foundation system test rig (all dimensions in mm). (a) Side elevation, (b) View
on Section X}X.
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theoretical and the hybrid models, and the second problem (Problem II) was to determine
the unbalance response of the points P

3
and P

5
on the rotor relative to the foundation by

the theoretical model only. In the both problems the simulation made use of single,
speed-independent estimates for bearing sti!ness (2 MN/m) and loss factor (0)2) for both the
x and y directions obtained by simple static tests, and which hence neglected any e!ect of
ball bearing rotation [11]. For the theoretical model solution the foundation subsystem was
modelled as a -oating Timoshenko beam with attached rigid bodies as shown in Figure 7.
The reason for this was that for frequencies well above the fundamental frequency of the



Figure 6. Test-rig set-up for the solution and experimental veri"cation of Problem I (d"61)25 mm).

Figure 7. Simpli"ed model of the foundation subsystem shown in Figure 6 (all dimension in m).
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isolation (somewhere in the range 5}20 Hz) the presence of the isolation can be neglected
and the supported structure behaves as if #oating freely in space [14]. The mass and
moment of inertia of each body (including the motor) were assumed to be concentrated at
the axial position (i.e., position along the z-axis) of the centre of mass of the body. For the
solution of Problem II dummy bearings were added between P

3
and Q

3
and between P

5
and

Q
5
. The simulations are compared with experimental results in section 4.

3.2. EXPERIMENTAL WORK

For the hybrid model the dynamic response of the foundation was required and this was
measured by using impact hammer excitation. Measurements were performed separately
for the vertical and horizontal planes. For these tests the rotor assembly was removed but
the bearings were retained in their pedestals. Strictly speaking, the bearings should have
been removed since they formed part of the rotor-bearing subsystem. However, their
removal would have a!ected their pre-load which in turn would alter their sti!ness value
which had been previously measured. Because the mass of the bearings was less than 1/20th
of the bearing pedestal assembly mass the error introduced by retaining the bearings was
considered to be negligible. For all the tests a frequency range of 0}200 Hz and a resolution
of 0)5 Hz was used.



460 P. BONELLO AND M. J. BRENNAN
Time constraints did not allow for the quanti"cation of the residual unbalance due to
geometric inaccuracies in the disc and the lack of straightness of the machined shaft.
Hammer tests were therefore conducted on the stationary rig, enabling veri"cation of the
predicted unbalance response curves for the two model problems over the speed range
1500}12000 rpm. When using an impact hammer on the wheel = in the x direction, the
transfer accelerance between = and an arbitrary location P on the system, a

PWx
"A

x
/F

x
can be measured, where A

x
is the acceleration at P due to the force F

x
. Now in rotation,

F
x
";u2 and hence a

PWx
"A

x
/;u2"!X/; where X"!A

x
/u2 is the displacement at

P in the x direction due to the unbalance ; at =. Similarly, for an impact at = in the

y direction the transfer accelerance between P and= is found to be a
PWy

"!>/(;e~j
n
2 ) .

Hence, it is seen that the magnitudes of the frequency response functions a
PWx

and a
PWy

,
respectively, give the displacement responses at P in the x and y directions for unit
unbalance at the wheel =. Hence, by using an unbalance of 1 kg in the simulations the
results can be directly compared with the measured accelerances discussed above.

For validation of the "rst problem three accelerometers were attached to points P
1
, P

2
,

P
3

shown in Figure 6 with their sensitivity axes along the y direction and a hammer blow
was applied at = in the y direction. The accelerances between = and P

1
, P

2
, P

3
were

measured. This procedure was repeated with at P
4
, P

5
, P

6
and again at the bearing

pedestals BP1, BP2, BP3. A similar procedure was then repeated for the x direction. For the
validation of the second problem two accelerometers were attached at points P

3
and Q

3
,

respectively, with their main sensitivity axes along the y direction, and the accelerances
between= and P

3
, Q

3
were measured. The di!erence between these two accelerances gives

the y displacement response of P
3

relative to Q
3

for unit unbalance at=. This procedure
was repeated for P

5
and Q

5
respectively. A similar procedure was then repeated for the

x direction.
The use of hammer tests on the stationary test rig to determine the unbalance response of

the rotating system is justi"ed provided (a) the behaviour of the ball bearings is una!ected
by rotation, and (b) the vibrations in the x and y directions during rotation are uncoupled,
i.e., the gyroscopic e!ects due to the polar moment of inertia of the disc and the shaft are
negligible. Subject to these conditions, the measured resonance frequencies of a stationary
system can be considered as the critical speeds of the rotating system. Assumption (b) is
justi"ed by noting that the polar moment of inertia of the wheel, at 0)5660]10~3 kgm2 was
negligible. Needless to say, the distributed polar moment of inertia of the slender 10 mm
diameter shaft was even more negligible. As regards assumption (a), it is observed in
reference [11] that ball-bearings exhibit non-linearities in rotation. Hence, the static
hammer tests for this particular case study are adequate to verify all aspects of the model
except the assumption of linear behaviour of the bearings in rotation.

The instantaneous displacements in the x and y directions at P
3

for 18 di!erent speeds in
the range 1500}6000 rpm were measured by using Bentley Nevada RK4 proximity probes
P1 and P2 mounted in the respective directions at point P

3
. The sampling frequency was

4096 Hz and the record length 0)125 s. The measured orbits were constructed from the
x and y displacements and show the motion of the shaft at P

3
during an interval of 0)125 s.

4. RESULTS AND DISCUSSION

Figure 8a}8d show the simulation results for the "rst problem obtained by using the
theoretical model for the absolute unbalance response at rotor position P

3
(Figures 8(a,b))

and at bearing pedestal BP2 (Figures 8(c,d)) in the x and y directions. The hammer test
measurements are overlaid on the same axes. From these "gures it can be seen that there is



Figure 8. Absolute unbalance response in x and y directions at point P
3

and bearing pedestal No. 2 (BP2):
predictions from theoretical model compared with measurement (hammer test). (a) Unbalance response at P

3
in

x direction, (b) Unbalance response at P
3

in y direction, (c) Unbalance response at BP2 in x direction, (d)
Unbalance response at BP2 in y direction. **, hammer test; } } } theoretical model.
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good agreement between predictions and measurement in the y direction. The measured
critical speed in the y direction (7281 rpm) is slightly higher than the predictions from the
theoretical model (7161 rpm). The agreement is not so good in the x direction, especially for
the response at the bearing pedestal BP2 beyond 7000 rpm. In particular, the theoretical
model fails to predict a second critical speed measured at 10 010 rpm. This speed
corresponds to a frequency of 167 Hz which was found to correspond to the "rst torsional
mode of the foundation. In fact, while the y-forces on the bearings of the coupled system
induce pure bending on the foundation beam, the x-forces will induce torsion in addition to
bending since their lines of action do not pass through the shear centre of the foundation
beam section. Moreover, the bending vibrations of the foundation in the xz plane will be
coupled with the torsional vibrations since the shear centre and the centroid of the
foundation beam section do not coincide [15]. The theoretical model ignores this torsion
e!ect completely. It can be seen in Figures 9(a}d) that the shortcomings of the theoretical
model with respect to the absolute response in the x direction, are overcome by the hybrid
model, which predicts critical speeds at 7025 and 10191 rpm.

The relative motion at P
3

predicted by the theoretical model is shown in Figures 10(a,b)
with the hammer test measurements overlaid on the same axes. There is good agreement
between the predicted and measured relative response in the y direction, but not as good
agreement as in the x direction. By comparing Figures 8(a,b) and 10(a,b), it can be noted



Figure 9. Absolute unbalance response in x and y directions at point P
3

and bearing pedestal No. 2 (BP2):
predictions from hybrid model compared with measurement (hammer test). (a) Unbalance response at P

3
in

x direction, (b) Unbalance response at P
3

in y direction, (c) Unbalance response at BP2 in x direction,
(d) Unbalance response at BP2 in y direction. ** hammer test; } } } } hybrid model.

Figure 10. Relative unbalance response in x and y directions at point P
3
: predictions from theoretical model

compared with measurement (hammer test). (a) Unbalance response in x direction, (b) Unbalance response in
y direction. **, hammer test; } } } } theoretical model
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that the antiresonance at around 2849 rpm in the absolute response (Figures 8a,b) does not
appear in the relative response (Figures 10(a,b)). From Figures 10(a,b) it is also seen that for
both simulation and measurement the relative responses in the x and y directions are
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practically equal in magnitude at all speeds. They were also found to be in quadrature at all
speeds which means that the shaft orbits should be circular, subject to the condition that the
ball bearings remain linear in rotation. Because the relative responses in the x and y directions
for both simulation and measurement are practically in quadrature at all speeds this indicates
a low degree of damping despite relatively high damping in the bearings. This is attributed to
the fact that the only damping forces in the system act at the bearings where the vibration of
the shaft relative to the foundation (and hence the energy dissipation) is very low. The peak
measured at around 13 Hz visible in all Figures 8}10 is the foam isolation resonance.

In Figures 11(a,b) the amplitudes of vibration in the x and y directions at point P
3
,

measured from the proximity probes are plotted for 18 speeds in the range 1500}6000 rpm.
The theoretical response, obtained by multiplying the relative response in Figures 10a,b
(which refers to an unbalance of 1 kg) by the added unbalance of 2]10~3 kg]30]10~3 m,
is overlaid on the same axes. It is observed that the measured response is invariably greater
than that predicted, which suggests that there is a high degree of unknown residual
unbalance. It is also observed that for speeds greater than around 4250 rpm the slope of an
imaginary curve through the measurement points roughly follows the slope of the
theoretical curve, which indicates that indicates that the model is valid for these speeds. For
speeds less than around 4250 rpm the slope of the curve through these points does not
follow the slope of the theoretical curve. In fact, the measured orbits show that a transition
from non-linearity to linearity occurs as the speed increases from 3500 to 4500 rpm and that
this transition is characterized by a stage of chaos at 4000 rpm as shown in Figure 12(a).
Such chaotic behaviour of ball bearings in rotation is described in reference [16]. For
speeds above 4500 rpm the non-linearities disappear and the measured orbits are nearly
perfect circles, as predicted (see Figure 12(b)).

Figures 13(a,b) compare the predictions for the absolute unbalance response at point
P
3

with and without foundation movement taken into account: the inclusion of the
foundation movement results in an increase in the "rst critical speed by 6%. This can be
easily explained by considering a Je!cott rotor of mass m supported on a #oating rigid

foundation of mass M. The fundamental resonance, u
c
"Jk(1#k)/m (rad/s) where

k"m/M and k is the equivalent sti!ness of the shaft and the bearings. Hence, since kO0,
u

c
is always greater than the fundamental resonance of the Je!cott Rotor when mounted on

a "xed foundation, u
n
"Jk/m .
Figure 11. Relative unbalance response in x and y directions at point P
5
: predictions from theoretical model

compared with measurement (proximitors). (a) Unbalance response in x direction, (b) Unbalance response in
y direction.**, theoretical model; #, measurement.



Figure 12. Orbits for rotational speeds 4000 and 5750 rpm (measured orbits: solid line, predicted orbits: dashed
line). (a) 4000 rpm, (b) 5750 rpm.

Figure 13. Comparison of predicted unbalance responses at point P
3

with and without foundation movement
taken into account (theoretical model). (a) Unbalance response in x direction, (b) Unbalance response in
y direction.** moving foundation; } } } "xed foundation.
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5. CONCLUSIONS AND FUTURE DEVELOPMENT

A mechanical impedance model of a coupled rotor-bearing-foundation system has been
developed and partially validated in this paper. This modelling approach has the advantage
that it can accomodate a mixture of theoretical and experimental models in the description
of a coupled system. Two versions of the model were illustrated; an entirely theoretical
model where the foundation was modelled as a beam and a hybrid model that included
some measurements of the foundation dynamics. An error in the theoretical model
prediction because of neglect of the torsional motion of the foundation was overcome by
using the hybrid model. Gyroscopic e!ects were negligible in the test rig used and hence for
the study reported here stationary testing using an impact hammer veri"ed all aspects of the
model developed except the assumption of linear behaviour of the ball bearings under
rotating conditions. The measured shapes of the orbits showed that at low speeds
non-linearities were evident in the test rig. However, these non-linearities disappeared at
high speeds and circular orbits, as predicted by the model, were measured.

The main advantages of such a method are found to be the reduced number of degrees of
freedom and the facility of including in the model either foundation dynamics
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measurements, where this is possible, or an analytical model of the foundation. The latter
need not be determined by the mechanical impedance method itself. The analogous
dynamic sti!ness method has been already been shown to be capable of determining natural
frequencies and instability threshold speeds for rotor-bearing systems with linearized #uid
"lm-bearing models. Moreover, although the mechanical impedance and its dynamic
sti!ness analogue ostensibly apply to linear systems, they can be applied to problems where
linear elements are coupled with non-linear elements, for example a rotor supported on
squeeze "lm bearings. The frequency response functions (mobilities, receptances) easily and
directly computed with such methods for the linear subsystem can be included in harmonic
balance calculations for the combined non-linear system. This is currently the subject of
further research and will be reported on in the near future.
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APPENDIX A: NOMENCLATURE

A cross-sectional area of shaft/beam segment
E Young's modulus
F
fp

F@
fp

complex amplitudes of force at bearing pedestal no. p in x, y directions respectively
G shear modulus
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i rotor station number (i"1,2,M)
I second moment of area of shaft element section
I
p
, I

t
polar and transverse moments inertia per unit length

I
Pi

, I
Ti

polar and transverse moments of inertia of disc at rotor station no. i respectively
I
x
, I

y
second moments of area of foundation section about neutral axis of bending in yz and
xz planes respectively

kN
bxi

complex sti!ness in x direction of bearing at rotor station no. i: kN
bxi

"k
bxi

(1#jg
bxi

)
where k

bxi
is the elastic sti!ness and g

bxi
the loss factor; similarly for kN

byi
, with respect

to the y direction
kN
fxr

complex sti!ness in x direction of foundation isolation mounting at foundation
station no. r; kN

fxr
"k

fxr
(1#jg

fxr
), where k

fxr
is the elastic sti!ness and g

fxr
the loss

factor; similarly for kN
fyr

, with respect to the y direction
¸ length of shaft/beam segment
m mass per unit length
m

i
mass of disc at rotor station no. i

M
x
, M

y
bending moments in xz and yz planes, respectively, at a general position z

M
1n

, M@
1n

complex amplitudes of bending moment at left-hand (LH) end of shaft segment n in xz,
yz planes respectively

M
2n

, M@
2n

complex amplitudes of bending moment at right-hand (RH) end of shaft segment n in
xz, yz planes respectively

n shaft segment number (n"1,2,M!1)
p bearing pedestal number (p"1,2, N)
Q

x
, Q

y
shear force in x and y directions, respectively, at a general position z

Q
1n

, Q@
1n

complex amplitudes of shear force at LH end of shaft segment n in x, y directions
respectively

Q
2n

, Q@
2n

complex amplitudes of shear force at RH end of shaft segment n in x, y directions
respectively

r foundation station number (r"1,2,R)
r
0

radius of gyration about a diameter, I
t
"mr2

0
T transpose
(superscript)
<
fp

, <@
fp

complex amplitudes of linear velocity of foundation in x, y directions, respectively, at
bearing pedestal no. p

<
i
, <@

i
complex amplitudes of linear velocity at rotor station no. i in x, y directions
respectively

<
1n

, <@
1n

complex amplitudes of linear velocity at LH end of shaft segment n in x, y directions
respectively

<
2n

, <@
2n

complex amplitudes of linear velocity at RH end of shaft segment n in x, y directions
respectively

x, y linear de#ections at a general position z at time t in x and y directions respectively
X

i
, >

i
complex amplitudes of linear displacement at rotor station no. i in x, y directions
respectively

u circular frequency of vibration (rad/s)
X rotational speed of rotor (rad/s)
a shear coe$cient
o material density
h
x
, h

y
rotation of cross-section at a general position z at time t in xz and yz planes
respectively

h
i
, h@

i
complex amplitudes of angular de#ections at rotor station no. i in xz, yz planes
respectively

X
1n

, X@
1n

complex amplitudes of angular velocities at LH end of shaft segment n in xz, yz planes
respectively

X
2n

, X @
2n

complex amplitudes of angular velocities at RH end of shaft segment n in xz, yz planes
respectively
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